

A comparison of turbulent closure models with direct numerical simulations of convection

Jan Snellman (UH), Petri Käpylä (UH), Maarit Mantere (UH), Matthias Rheinhardt (UH)

Astronomers Days, Haikon Kartano, Porvoo, 6.6.2012

Introduction

- The direct numerical simulations (DNS) of differential rotation, meridional flows and the magnetic fields of the Sun are complicated by
 - -the need to model turbulent convection and
 - -the wide range of relevant scales.
- Simple models such as the mixing length theory have previously been used to tackle with these problems.
- The computing power of modern computers allows us to move beyond the earlier models.

The mixing length model Böhm-Vitense 1958)

(Böhm-Vitense, 1958) $T', \rho', ...$ T, ρ, \dots

Mean field models

- One way to study turbulence is to model large and small scale motions separately.
 - => Reynolds decomposition:

$$x = \bar{X} + x'$$

+ The Reynolds rules:

$$\overline{\overline{X}} = \overline{X}, \overline{\overline{X}_1} + \overline{X}_2 = \overline{X}_1 + \overline{X}_2, \overline{\overline{X}_1} \overline{X}_2 = \overline{X}_1 \overline{X}_2, \overline{x'} \overline{X} = 0, \overline{X}_1 \overline{X}_2 = \overline{X}_1 \overline{X}_2 + \overline{x'}_1 \overline{x'}_2 = \overline{X}_1 \overline{X}_2 + \overline{x'}_1 \overline{x'}_2 = \overline{X}_1 \overline{X}_2 + \overline{X}_1 \overline{X}_2 + \overline{X}_1 \overline{X}_2 = \overline{X}_1 \overline{X}_1 \overline{X}_1 \overline{X}_2 = \overline{X}_1 \overline{X}_1 \overline{X}_1 \overline{X}_1 \overline{X}_2 = \overline{X}_1 \overline{X}_1 \overline{X}_1 \overline{X}_1 \overline{X}_1 = \overline{X}_1 \overline{X}_1 \overline{X}_1 \overline{X}_1 = \overline{X}_1 = \overline{X}_1 \overline{X}_1 = \overline{X}_1 \overline{X}_1 = \overline{X}_1 \overline{X}_1 = \overline{X}_1 =$$

Closure problem in a nutshell

• Deriving equations of motion for mean velocity field one encounters a closure problem:

$$\frac{\partial \overline{U}_{i}}{\partial t} = \dots + \frac{\partial \overline{u'_{i}u'_{j}}}{\partial r_{j}} = \dots + \frac{\partial R_{ij}}{\partial r_{j}}$$

$$\frac{\partial \overline{R}_{ij}}{\partial t} = \dots + \frac{\partial \overline{u'_{i}u'_{j}u'_{k}}}{\partial r_{k}} = \dots + \frac{\partial N_{ijk}}{\partial r_{k}}$$

$$\vdots$$

$$\frac{\partial N_{i_{1}i_{2}\dots i_{n}}}{\partial t} = \dots + \frac{\partial N_{i_{1}i_{2}\dots i_{n}+1}}{\partial r_{k}}$$

• This can only be remedied by closure models, i.e. applying an approximation at some point.

Pros and cons of closure models

• Pros:

- Analytical treatment of turbulent phenomena.
- Computationally inexpensive.

• Cons:

- The assumptions used are often very drastic, and lack thorough physical justification.
- Many closures employ several model parameters, which need need to be evaluated and explained independently.

Closure vs DNS

- Garaud et al (2010, hereafter GOMS10) proposed a closure model for turbulent convection.
- In the present work we compare the results from this closure to the DNS results from Pencil Code (http://code.google.com/p/pencil-code/).
- The DNS setup describes 3d box in the convective zone of a rotating star at colatitude θ .
- The horizontal averages from the DNS results were compared with results from 1d incompressible Boussinesq closure.

Pencil Code in action

The variables and parameters

- The mean variables employed by the GOMS10 closure are the mean velocity field \bar{U} and temperature $\bar{\Theta} = T T_0$.
- The following second order turbulent correlations are retained in the model: The Reynolds stresses, $R_{ij} = \overline{u_i' u_j'}$ the turbulent heat fluxes $F_i = \overline{\Theta' u_i'}$ and the temperature variance $Q = \overline{\Theta'}^2$.
- The physical parameters used in the model are the gravitational acceleration g, the coefficient of expansion α , the kinematic viscosity ν and thermal diffusivity χ_0 .

The mean equations in the Boussinesq case

$$\dot{\overline{U}}_i = -\overline{U}_j \partial_j \overline{U}_i - \alpha \overline{\Theta} g_i - \partial_i \overline{\Psi} - 2 \epsilon_{ijk} \Omega_j \overline{U}_k + \nu \partial_{jj} \overline{U}_i - \partial_j R_{ij} \quad (1)$$

$$\overline{\Theta} = -\overline{U}_i \partial_i \overline{\Theta} + \chi_0 \partial_{ii} \overline{\Theta} - \partial_i F_i$$
 (2)

$$\dot{R}_{ij} + \overline{U}_k \partial_k R_{ij} + R_{ik} \partial_k \overline{U}_j + R_{jk} \partial_k \overline{U}_i + \alpha (F_i g_j + F_j g_i) - \nu \partial_{kk} R_{ij} + 2\varepsilon_{ilk} \Omega_l R_{jk} + 2\varepsilon_{jlk} \Omega_l R_{ki} = N_{ij}^1$$

$$\dot{F}_{i} + \overline{U}_{j}\partial_{j}F_{i} + R_{ij}\partial_{j}\overline{\Theta} + F_{j}\partial_{j}\overline{U}_{i} + \alpha Qg_{i} - \frac{1}{2}(\nu + \chi_{0})\partial_{jj}F_{i}$$

$$+2\varepsilon_{ijk}\Omega_{j}F_{k} = N_{i}^{2}$$

$$(3)$$

$$\dot{Q} + \overline{U}_i \partial_i Q + 2F_i \partial_i Q - \chi_0 \partial_{ii} Q = N^3 \tag{4}$$

The nonlinear terms replaced by GOMS10

$$N_{ij}^{1} = -\overline{u_{i}'\partial_{j}\Psi' + u_{j}'\partial_{i}\Psi'} - \overline{u_{i}'\partial_{k}(u_{j}'u_{k}') + u_{j}'\partial_{k}(u_{i}'u_{k}')} - 2\nu\overline{\partial_{k}u_{i}'\partial_{k}u_{j}'}$$

$$\rightarrow -\frac{C_{1}}{L}R^{1/2}R_{ij} - \frac{C_{2}}{L}R^{1/2}(R_{ij} - \frac{1}{3}R\delta_{ij}) - \nu\frac{C_{\nu}}{L^{2}}R_{ij}$$

$$(5)$$

$$N_i^2 = -\overline{\Theta'\partial_i\Psi'} - \overline{\Theta'\partial_k(u_j'u_k') + u_k'\partial_k(u_i'\Theta')} + \frac{1}{2}(\nu - \chi_0)\overline{\partial_k(\Theta'\partial_k u_i' - u_i'\partial_k\Theta')}$$

$$-(\nu + \chi_0)\overline{\partial_k \Theta' \partial_k u_i'} \to -\frac{C_6}{L} R^{1/2} F_i - \frac{1}{2} (\nu + \chi_0) \frac{C_{\nu \chi_0}}{L^2} F_i \tag{6}$$

$$N^{3} = -2\nu \overline{\Theta'\partial_{k}F_{k}} - 2\chi_{0}\overline{(\partial_{k}\Theta')^{2}} \rightarrow -\frac{C_{7}}{L}R^{1/2}Q - \chi_{0}\frac{C_{\chi_{0}}}{L^{2}}Q$$
 (7)

Relaxation Return to isotropy Turbulent diffusion

Slow rotation, $\theta=0^{\circ}$ (Snellman et al 2012, in preparation)

Slow rotation, θ =45°, (Snellman et al 2012, in preparation)

Slow rotation, θ =45°, (Snellman et al 2012, in preparation)

Slow rotation, θ =90°, (Snellman et al 2012, in preparation)

Slow rotation, θ =90°, (Snellman et al 2012, in preparation)

Conclusions and outlook

- In 1d application of the GOMS10 model the most striking difference to the DNS results is seen at the boundaries in R_{xx} and R_{yy} , but otherwise the results do not seem too different.
- Likely reason for this discrepancy are the coherent flow patterns in DNS that are not taken into account in the closure.
- Coming up: Boussinesq module for Pencil Code, comparisons with 0-dimensional version of the closure.

References

- Garaud, P., Ogilvie, G. I., Miller, N., & Stellmach, S.,"A model of the entropy flux and Reynolds stress in turbulent convection", 2010, MNRAS, 407, 2451
- Snellman J. E., Käpylä, P.J., Mantere, M.J., Rheinhardt M., "Testing turbulent closure models with convection simulations", In preparation.
- Böhm-Vitense, E., Zeitschrift für Astrophysik, Vol. 46, p.108, 1958

More references

• Prandtl L., "Über die ausgebildete Turbulenz", "Z. angew" Math. Mech 5: 136-139, 1925.